iNature
在2019年10月26,iNature盘点了中国学者共发表了152篇CNS文章(点击阅读),其中材料科学有27篇,地球科学12篇,化学8篇,生命科学90篇,物理学15篇。中国学者在生命科学领域发表了90篇CNS文章,其中平均每个月发表9篇,iNature预测在在2019年全年中,中国学者有望首次突破100篇(2018年发表了97篇,点击阅读)。
对于生命科学领域,截至2019年10月28日,中国学者在Cell,Nature及Science在线发表了90篇文章,iNature团队对于这些文章做了系统的总结:
按杂志来划分:Cell 发表了24篇,Nature 发表了38篇,Science 发表了28篇;
按是否有合作单位划分:其中有36篇文章由独立的一个通讯单位完成,54篇是多单位共同通讯完成的,其中有33篇是中外多单位共同通讯完成的,21篇是国内多单位共同通讯完成;
按单位来划分(文章数目大于3):中国科学院26篇,清华大学23篇(包括16篇冷冻电镜成果),北京大学9篇,复旦大学6篇,上海交通大学5篇,浙江大学5篇,西北工业大学,中山大学,中国农科院都是3篇;
按通讯作者来分(大于1篇CNS):颜宁4篇,王文,柴继杰及施一公都是3篇,曹雪涛,邱强,杨辉,李雪明等人都是2篇(王文/邱强,柴继杰/王宏伟/周俭民,杨辉/李亦学是合作团队);
最后,由于文章较多,如有错误,请及时向iNature反映,方便我们进一步纠正。
1.截至2019年10月28日,在生命科学领域中国学者发表了90篇CNS文章,具体的单位列表如下:
2.文章列表如下(红色的为第一单位的通讯作者):
3.所有文章解析列表
【1】2019年1月1日,施一公研究组在Nature 在线发表题为“Structural basis of Notch recognition by human γ-secretase”的研究论文,该论文报告人类γ-分泌酶与Notch片段的复合物的冷冻电子显微镜结构,分辨率为2.7?。Notch的跨膜螺旋被PS1的三个跨膜结构域包围,并且Notch片段的羧基末端β-链形成β-折叠,其在细胞内侧具有两个底物诱导的PS1的β-链。杂合β-折叠的形成对于底物裂解是必需的,其发生在Notch跨膜螺旋的羧基末端。PS1在底物结合后经历明显的构象重排。这些特征揭示了Notch识别的结构基础,并且对γ-分泌酶对淀粉样蛋白前体蛋白的募集具有意义(点击阅读)。
【2】2019年1月11日,清华大学施一公团队在Science在线发表题为“Recognition of the amyloid precursor protein by human γ-secretase”的研究论文,该论文报告了人类γ-分泌酶与跨膜APP片段的复合物的冷冻电子显微镜(cryo-EM)结构,分辨率达到2.6?。 该结构用作发现γ-分泌酶的底物特异性抑制剂和理解γ-分泌酶的生物学功能以及AD的疾病机制的重要框架(点击阅读);
【3】2019年1月11号,上海科技大学iHuman研究所刘志杰研究团队等人在Cell在线发表了题为“Crystal Structure of the Human Cannabinoid Receptor CB2”的研究论文,研究报道了人源CB2与拮抗剂AM 10257的复合物的晶体结构,分辨率为2.8?。该研究为深入了解CB2的激活机制提供了重要的线索,有助于合理的药物设计,以精确调节内卡那宾系统(点击阅读);
【4】2019年1月11日,中国科学院动物研究所孙悦华团队在Science杂志在线发表题为“Problem-solving males become more attractive to female budgerigars”的研究论文,这是一个虎皮鹦鹉雄鸟通过学习取食技术重新赢得青睐的故事(点击阅读);
【5】2019年1月24日,中科院生物物理所高光侠团队在Cell发表题为“Regulation of HIV-1 Gag-Pol Expression by Shiftless, an Inhibitor of Programmed -1 Ribosomal Frameshifting”的研究论文,该论文报道干扰素刺激的基因产物C19orf66(本文称为Shiftless)是抑制HIV-1的-1PRF的宿主因子。这些发现将SFL鉴定为-1PRF的广谱抑制剂,并有助于进一步阐明-1PRF的机制(点击阅读);
【6】2019年1月24日,上海科技大学李俊,杨海涛及饶子和在Cell发表题为“Crystal Structures of Membrane Transporter MmpL3, an Anti-TB Drug Target”的研究论文,该论文报道了单独的分枝杆菌MmpL3和与四种TB候选药物复合的晶体结构,包括SQ109(在2b-3期临床试验中)。该结构数据将极大地推动MmpL3抑制剂作为新的TB药物的开发(点击阅读);
【7】2019年1月31日,波士顿大学医学院崔儒涛,厦门大学邓贤明及复旦大学王鹏共同通讯在Cell在线发表题为“Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis”的研究论文,该论文确定以前未表征的丝氨酸/苏氨酸激酶STK19作为新的NRAS激活剂(点击阅读);
【8】2019年1月31日,中南大学湘雅医院柏勇平,休斯顿卫理公会的心血管再生中心Fang Longhou及Chen Kaifu共同通讯在Science在线发表题为“AIBP-mediated cholesterol efflux instructs hematopoietic stem and progenitor cell fate”的研究论文,该论文报告了一个体节衍生的促造血线索,AIBP,协调HSPC从血液内皮,一种表现出造血潜能的特化内皮细胞的出现(点击阅读);
【9】2019年2月7日,芝加哥大学何川,中国科学院北京基因组研究所韩大力及清华大学徐萌共同通讯在Nature在线发表题为“Anti-tumour immunity controlled through mRNA m6A methylation and YTHDF1 in dendritic cells”的研究论文,这项工作表明,与新出现的检查点抑制剂或DC疫苗相结合,YTHDF1可能成为免疫治疗的治疗靶点(点击阅读);
【10】2019年2月8号,中国科学院植物研究所匡廷云团队在Science上在线发表了题为“Structural basis for blue-green light harvesting and energy dissipation in diatoms”的研究论文,该研究解析了三角褐指藻(Phaeodactylum tricornutum)二聚体FCP的x射线晶体结构,分辨率为1.8?,揭示了的每一种色素的配体结构和结合环境,为研究光捕获系统中单个色素的吸收特性、能量转移途径和动力学以及过剩能量耗散机制提供了基础(点击阅读);
【11/12】2019年2月15日,原清华大学颜宁团队Science背靠背同期发表2篇论文,发表发表题为“Structures of human Nav1.7 channel in complex with auxiliary subunits and animal toxins”及“Molecular basis for pore blockade of human Na+ channel Nav1.2 by the μ-conotoxin KIIIA”,共同阐述离子通道结构(点击阅读);
【13】2019年2月21日,国家生物医学分析中心李涛及张学敏共同通讯在Cell 在线发表题为“Acetylation Blocks cGAS Activity and Inhibits Self-DNA-Induced Autoimmunity”的研究论文,该论文揭示乙酰化抑制cGAS激活和阿司匹林直接乙酰化cGAS,同时抑制自我DNA诱导的自身免疫。另外,该研究发现Lys384,Lys394或Lys414上的cGAS乙酰化有助于保持cGAS无活性。重要的是,阿司匹林可直接促进cGAS乙酰化并有效抑制cGAS介导的免疫反应。最后,该文章证明阿司匹林可以有效抑制Aicardi-Goutières综合征(AGS)患者细胞和AGS小鼠模型中的自身DNA诱导的自身免疫。因此,乙酰化有助于cGAS活性调节,并为治疗DNA介导的自身免疫疾病提供了潜在的治疗方法(点击阅读);
【14】2019年2月27日,北京生命组学研究所贺福初,复旦大学附属中山医院樊嘉,国家蛋白质科学中心钱小红在Nature共同通讯发表题为“Proteomics identifies new therapeutic targets of early-stage hepatocellular carcinoma”的研究论文,该研究使用蛋白质组学和磷酸蛋白质组学分析,发现110个与乙型肝炎病毒感染相关的临床早期肝细胞癌的成对肿瘤和非肿瘤组织。定量蛋白质组学数据突出了早期肝细胞癌的异质性:研究人员使用它来将该队列分层为亚型S-I,S-II和S-III,每种亚型具有不同的临床结果。本研究中提出的早期肝细胞癌的蛋白质组学分层,提供了对该癌症的肿瘤生物学的深入了解,并提出了针对它的个性化治疗的机会(点击阅读);
【15】2019年2月27日,第三军医大学(陆军军医大学)卞修武,刘新东及清华大学董晨等人共同通讯在Nature发表题为“Genome-wide analysis identifies NR4A1 as a key mediator of T cell dysfunction”的研究论文,该论文使用小鼠体外T细胞耐受诱导系统,研究人员发现耐受性T细胞中的全基因组表观遗传和基因表达特征,并表明它们不同于效应和调节性T细胞。值得注意的是,转录因子NR4A1在耐受性T细胞中以高水平稳定表达。NR4A1的过表达抑制效应T细胞分化,而NR4A1的缺失克服了T细胞耐受性并夸大了效应功能,以及增强对肿瘤和慢性病毒的免疫力。该研究将NR4A1鉴定为诱导T细胞功能障碍的关键一般调节因子,并且是肿瘤免疫疗法的潜在靶标(点击阅读);
【16】中国科学技术大学薛天,初宝进及马萨诸塞大学医学院Han Gang共同通讯在Cell 在线发表题为“Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae”的研究论文,该研究开发了可注射眼球注射光感受器的上转换纳米粒子(pbUCNPs)。这些纳米颗粒锚定在视网膜光感受器上作为微型NIR光传感器,以产生具有可忽略的副作用的NIR光图像视觉。这种新方法将为各种新兴的生物集成纳米器件设计和应用提供无与伦比的机会。这一概念验证研究应指导未来的研究,以扩展人类和非人类视觉,而无需任何外部设备或遗传操作。赋予具有近红外视觉能力的哺乳动物也可以为重要的民用和军用应用铺平道路(点击阅读);
【17】哈佛医学院吴皓,James J. Chou及浙江大学陈枢青共同通讯在Cell发表题为“Higher-Order Clustering of the Transmembrane Anchor of DR5 Drives Signaling”的研究论文,该论文报告了一个意外的发现,对于死亡受体5(DR5),肿瘤坏死因子受体超家族中的受体,受体中单独的跨膜螺旋(TMH)直接组装高阶结构以驱动信号传导,并且这种结构未被束缚的胞外域抑制。该研究提供了新的机会和独特的观点来调节这些受体的信号转导,这些数据可用于疾病治疗,包括癌症免疫疗法(点击阅读);
【18】中国科学院灵长类神经生物学重点实验室杨辉研究组,上海生科院李亦学及斯坦福大学Lars M. Steinmetz等人在Science发表题为“Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos”的研究论文,该研究建立了一种被命名为GOTI(Genome-wide Off-target analysis by Two-cell embryo Injection)的新型脱靶检测技术,并使用该技术发现: 近年来兴起的单碱基编辑技术有可能导致大量无法预测的脱靶,因而存在严重的安全风险。此研究显著提高了基因编辑技术脱靶检测的敏感性,并且可以在不借助于任何脱靶位点预测技术的情况下发现之前的脱靶检测手段无法发现的完全随机的脱靶位点,为基因编辑工具的安全性评估带来了突破性的新工具,有望成为新的行业检测标准(点击阅读);
【19】中科院遗传所高彩霞团队在Science发表题为“Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice”的研究论文,该论文对水稻(一种重要的作物物种)中BE3,HF1-BE3和ABE的全基因组脱靶突变进行了全面调查。该研究发现BE3和HF1-BE3而非ABE诱导大量全基因组脱靶突变, 主要是C→T型单核苷酸变体(SNV),并且在富含基因区域。值得注意的是,在没有sgRNA的情况下用BE3或HF1-BE3处理水稻也导致全基因组SNV的增加。因此,需要优化BE3或HF1-BE3的碱基编辑单元以获得高保真度(点击阅读);
【20】2019年3月6日,清华大学江鹏团队在Nature在线发表题为“p53 regulation of ammonia metabolism through urea cycle controls polyamine biosynthesis”的研究论文,该论文报告肿瘤抑制因子p53,人类肿瘤中最常见的突变基因,通过抑制尿素循环来调节氨代谢。通过CPS1,OTC和ARG1的转录下调,p53在体外和体内抑制尿素生成和氨的消除,导致肿瘤生长的抑制。相反,这些基因的下调通过MDM2介导的机制相互激活p53。此外,氨的积累导致多胺生物合成速率限制酶ODC的mRNA翻译显著下降,从而抑制多胺的生物合成和细胞增殖。总之,这些发现将p53与尿素生成和氨代谢联系起来,并进一步揭示了氨在控制多胺生物合成和细胞增殖中的作用(点击阅读);
【21】2019年3月13日,西湖大学周强团队(第一单位清华大学)在Nature在线发表题为“Structure of the human LAT1–4F2hc heteromeric amino acid transporter complex”的研究论文,该研究阐明了LAT1-4F2hc复合体的结构,并提供了对其功能及其可能与疾病相关的机制的见解(点击阅读);
【22】2019年3月13日,美国希望之城贝克曼研究所陈建军,芝加哥大学何川,中山大学杨建华及辛辛那提儿童医院黄刚共同通讯在Nature在线发表题为“Histone H3 trimethylation at lysine 36 guides m6A RNA modification co-transcriptionally”的研究论文,该研究揭示了Lys36(H3K36me3)的组蛋白H3三甲基化【转录延伸的标记】,指导m6A的沉积过程(点击阅读);
【23】2019年3月13日,清华大学陈柱成/李雪明团队在Nature在线发表题为的"Mechanism of DNA translocation underlying chromatin remodelling by Snf2"的研究论文,该研究解析了不同核苷酸状态下Snf2-核小体复合物的冷冻电镜结构,揭示了染色质重塑的机理(点击阅读);
【24】2019年3月14日,施一公研究组在Cell 在线发表题为“Structures of the Catalytically Activated Yeast Spliceosome Reveal the Mechanism of Branching”的研究论文,该研究得到了酿酒酵母的两种不同前mRNA上组装了B *复合物,并确定了四种不同B *复合物的冷冻EM结构,总分辨率为2.9-3.8?。 U2核小RNA(snRNA)和分支点序列(BPS)之间的双链离散地远离5个B *复合物中的5'-剪接位点(5'SS),其缺乏步骤I剪接因子Yju2和Cwc25。将Yju2募集到活性位点使U2 / BPS双链体进入5'SS附近,BPS亲核试剂位于距催化金属M24?处。该分析揭示了Yju2和Cwc25在分支中的功能机制。 不同前mRNA上的这些结构揭示了在主要功能状态下剪接体的底物特异性构象。 这些构象状态的比较揭示了对支化反应的机理见解(点击阅读);
【25】2019年3月14日,山东大学张亮然,Wang ShunXing及哈佛大学Nancy Kleckner共同通讯在Cell 发表题为“Per-Nucleus Crossover Covariation and Implications for Evolution”的研究论文,该论文确定了减数分裂重组的一个基本新特征:每核CO协变。从三种哺乳动物,高等植物和真菌的文献中可以看出,这一特征在进化上是保守的。这些发现揭示了减数分裂过程的一个新特征,并提出了可能的适应性优势(点击阅读);
【26】2019年3月21日,北京大学高宁与中国医学科学院病原生物学研究所金奇共同通讯在Cell在线发表题为“Cryo-EM Structure and Assembly of an Extracellular Contractile Injection System”的研究论文,该研究报告了来自P. asymbiotica的完整PVC的冷冻电子显微镜结构。这种超过10-MDa的蛋白装置类似于简化的T4噬菌体尾部,包含六个六角形基板复合物和一个带帽的117纳米鞘管。 PVC的一个显著特征是管和鞘蛋白的三种变体的存在,表明它们在进化过程中的功能特化。该研究为理解广泛使用的CIS的一般机制提供了框架,并为将其用作生物或治疗应用中的递送工具铺平了道路(点击阅读);
【27】2019年6月21日,西北工业大学王文,中科院昆明动物研究所/BGI 张国捷及丹麦哥本哈根大学Rasmus Heller共同通讯在Science在线发表题为”Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits“的研究论文,该研究结果不仅为了解反刍动物群体的起源和进化及其特殊性状提供了数据,而且还具有将反刍家畜基因组资源置于进化背景和保护反刍动物生物多样性的意义(点击阅读);
【28】2019年6月21日,西北工业大学王文,邱强及中国农业科学院特产研究所李志鹏共同通讯在Science 发表题为”Biological adaptations in the Arctic cervid, the reindeer (Rangifer tarandus)“的研究论文,该文章被选为本期Science的封面文章。该结果可能提供与人类健康相关的见解,包括驯鹿中维生素D的遗传反应如何影响骨骼和脂肪代谢以及基因如何影响昼夜节律性心律失常(点击阅读);
【29】2019年6月21日,西北农林科技大学姜雨,西北工业大学王文及邱强共同通讯在Science 在线发表题为”Genetic basis of ruminant headgear and rapid antler regeneration“的研究论文,该研究揭示了反刍动物头带的进化,发育和组织学起源以及鹿角再生的遗传机制。已鉴定的基因及其独特的突变为未来头带发育,哺乳动物器官再生和肿瘤发生的功能研究提供了指导(点击阅读);
【30】2019年6月14号,清华大学生命科学学院杨茂君Science杂志发表题为“Cryo-EM structure of the mammalian ATP synthase tetramer bound with inhibitory protein IF1”的研究论文,通过高性能冷冻电镜技术,解析了分子量高达280万道尔顿的哺乳动物ATP合酶四聚体6.2埃的结构,以及完整的(19种亚基)、两种状态的ATP合酶单体3.34埃和3.45埃结构(点击阅读);
【31】2019年6月12日,中国科学院深圳先进技术研究院周晖晖,中山大学项鹏,华南农业大学杨世华及美国麻省理工学院冯国平共同通讯在Nature在线发表题为“Atypical behaviour and connectivity in SHANK3-mutant macaques”的研究论文,该研究使用CRISPR-Cas9技术介导的SHANK3-突变体猕猴模型的创建,同时得到了F1代。该模型首次在非人类灵长类动物重现了自闭症谱系障碍(Phelan-McDermid综合征),对于进一步研究自闭症谱系障碍的分子机制打下了坚实的基础(点击阅读);
【32】2019年6月12日,美国哈佛医学院吴皓及北京大学毛有东共同通讯在Nature在线发表题为“Structural mechanism for NEK7-licensed activation of NLRP3 inflammasome”的研究论文,该研究报告了与NEK7复合的无活性人NLRP3的冷冻电子显微镜结构,分辨率为3.8?。总而言之,结构和功能研究已经证明NLRP3-NEK7相互作用决定了NEK7对NLRP3炎性体激活的需求(点击阅读);
【33】2019年6月10日,中科院神经科学研究所杨辉、周海波,与四川大学郭帆和中科院上海营养所李亦学共同通讯在Nature在线发表题为“Off-target RNA mutation induced by DNA base editing and its elimination by mutagenesis”的研究论文,该研究进一步验证了BE3与ABE两种DNA单碱基编辑器在RNA水平上的脱靶现象,提出了针对这两种系统的优化方案,有效降低了它们在RNA水平上的脱靶效应(点击阅读);
【34】2019年5月30日,加州大学洛杉矶分校的Z. Hong Zhou团队(中国科学技术大学位第一单位,刘云涛为第一作者)在Nature 杂志上发表了题目为“Cryo-EM structures of herpes simplex virus type1 portal vertex and packaged genome”的研究论文,该工作利用冷冻电镜首次解析了人类疱疹病毒基因组包装的关键机制以及病毒的DNA基因组结构,有助于预防和控制疱疹病毒引发的多种疾病,并可望改造疱疹病毒用于靶向治疗(点击阅读);
【35】2019年5月31日,北京大学生命科学学院瞿礼嘉课题组在Science在线发表题为“Cysteine-rich peptides promote interspecific genetic isolation in Arabidopsis”的研究论文,该研究表明整个AtLURE1基因家族的敲除不影响生育力,表明在一个拟南芥物种内成功受精不需要AtLURE1-PRK6介导的信号传导。 该研究有利于未来的育种工作,同时可以通过向作物植物添加期望的农艺性状来增加基因库(点击阅读);
【36】2019年5月30日,颜宁(清华大学为第一通讯单位)及吴建平共同通讯在Cell 在线发表题为“Molecular Basis for Ligand Modulation of a Mammalian Voltage-Gated Ca2+ Channel”的研究论文,该研究报告了Cav1.1与拮抗药物硝苯地平,地尔硫卓和维拉帕米的复合物的冷冻电子显微镜(cryo-EM)结构,分辨率分别为2.9?,3.0?和2.7?;Cav1.1与DHP激动剂Bay K 8644复合物的冷冻电子显微镜(cryo-EM)结构,分辨率为2.8?(点击阅读);
【37】2019年5月30日,美国维克森林大学林慧宽团队(第一单位是国家生物医学分析中心,第一作者是张维娜)在Cell 在线发表题为“Lactate Is a Natural Suppressor of RLR Signaling by Targeting MAVS”的研究论文,该研究发现在RLR活化期间失活的糖酵解作为阻止RLR活化后I型IFN产生的屏障。RLR触发的MAVS-RIG-I识别劫持己糖激酶与MAVS结合,导致己糖激酶线粒体定位和激活受损。乳酸通过直接结合MAVS跨膜(TM)结构域并阻止MAVS聚集而用作负责糖酵解介导的RLR信号传导抑制的关键代谢物(点击阅读);
【38】2019年5月16日,中国科学院微生物研究所病原微生物与免疫学重点实验室高福,首都医科大学附属北京儿童医院谢正德及北京大学魏文胜共同通讯在Cell 在线发表题为“Human Neonatal Fc Receptor Is the Cellular Uncoating Receptor for Enterovirus B”的研究论文,该研究通过CRISPR-Cas9文库筛选鉴定新生儿Fc受体(FcRn)作为大量EV-B病毒的通用脱壳受体。该研究系统地剖析了Echo 6附着和脱壳受体的不同作用,这为理解肠道病毒进入的机制提供了结构基础。发现FcRn作为其受体将改善基于艾柯病毒的溶瘤治疗剂的开发(点击阅读);
【39】2019年5月9日,中国科学院微生物研究所病原微生物与免疫学重点实验室高福及中国科学院天津工业生物技术研究所Gao Feng共同通讯在Cell 在线发表题为“Molecular Basis of Arthritogenic Alphavirus Receptor MXRA8 Binding to Chikungunya Virus Envelope Protein”的研究论文,该研究研究人员报告了游离小鼠MXRA8(mMXRA8)的晶体结构和人MXRA8(hMXRA8)与CHIKV E蛋白之间的复合物的冷冻电子显微镜结构。 该发现提供了关于针对那些致关节炎性甲病毒的治疗对策的发展的重要信息(点击阅读);
【40】清华大学Liu Xiangyu及斯坦福大学Brian K. Kobilka共同通讯在Cell 发表题为“Structural Insights into the Process of GPCR-G Protein Complex Formation”的研究论文,该研究提出了与Gαs的羧基末端14个氨基酸复合的β2AR结构以及GDP结合的Gs异源三聚体的结构。这些结构为β2AR和Gs之间的交替相互作用提供了证据,同时提出β2AR的活性结构仅由GsCT的14个氨基酸稳定。该结构可以代表无核苷酸的β2AR-Gs复合物形成中的构象中间体,并揭示G蛋白活化的动态过程(点击阅读);
【41】2019年5月10日,中科院遗传发育所白洋组与JIC的Anne Osbourn组合作在Science在线发表题为“A specialized metabolic network selectively modulates Arabidopsis root microbiota”的研究论文,该研究揭示了拟南芥三萜类化合物对根系微生物组的调控规律。该工作系统地解析了拟南芥中形成基因簇的三萜合成遗传网络(点击阅读);
【42】2019年5月8日,北京大学王初及陈鹏共同通讯在Nature在线发表题为“Time-resolved protein activation by proximal decaging in living systems”的研究论文,该研究报告了计算辅助和遗传编码的近端分解(以下称为CAGE-prox)策略的开发,该策略能够实现活细胞和小鼠中广泛蛋白质以时间分辨率激活(点击阅读);
【43】中科院上海生物化学与细胞生物学研究所徐国良院士联合复旦大学唐惠儒教授和中科院武汉水生生物研究所黄开耀研究员等多个课题组合作在Nature 杂志发表了题为“A vitamin-C-derived DNA modification catalysed by an algal TET homologue” 的研究论文,该研究发现在莱茵衣藻(Chlamydomonas reinhardtii)中TET双加氧酶的同源蛋白CMD1能以维生素C为底物,在DNA的5-甲基胞嘧啶上催化产生一种全新的DNA修饰5gmC。并进一步发现这种具有独特的DNA修饰活性的CMD1蛋白与5gmC参与了光合作用的反馈调控。该研究对于丰富DNA修饰的研究内容,更进一步了解表观遗传学的深度内涵都具有重要的意义(点击阅读);
【44】细胞生物化学的一个重要组成部分是非膜性区室中蛋白质和核酸的浓度。这些生物分子缩合物由包括液 - 液相分离的过程形成。液 - 液相分离所需的多价相互作用已在体外进行了广泛研究。然而,人们对体内该过程的调节知之甚少。清华大学李丕龙研究团队等人在Nature在线发表了题为“Arabidopsis FLL2 promotes liquid–liquid phase separation of polyadenylation complexes”的文章。该研究结果表明,卷曲螺旋域蛋白可以促进液 - 液相分离,这扩展了我们对控制液体样体内动力学原理的理解(点击阅读);
【45】中国科学院青藏高原研究所陈发虎,兰州大学张东菊及德国马普演化人类学研究所Jean-Jacques Hublin共同通讯在Nature在线发表题为“A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau”的研究论文,该研究分析了甘肃夏河县新发现的古人类下颌骨化石,可以确定其为青藏高原的丹尼索瓦人,建议命名为夏河丹尼索瓦人,简称夏河人。结果发现,该化石目前是除阿尔泰山地区丹尼索瓦洞以外发现的首例丹尼索瓦人化石,也是青藏高原发现的最早人类活动证据(距今16万年前)。该研究为进一步探讨丹尼索瓦人的体质形态特征及其在东亚地区的分布、青藏高原早期人类活动历史及其对高海拔环境适应等问题提供了关键证据(点击阅读);
【46】耶鲁大学David G. Schatz,Xiong Yong及北京中医药大学徐安龙共同通讯在Nature在线发表题为“Transposon molecular domestication and the evolution of the RAG recombinase”的研究论文,该研究从文昌鱼ProtoRAG转座酶的冷冻电子显微镜结构开始,鉴定了其氨基酸残基和结构域,其获得或丧失功能支持RAG偶联裂解的倾向,它对不对称DNA底物的偏好并且它无法在细胞中进行转座。研究结果揭示了抑制RAG介导的转座的双层机制,阐明了V(D)J重组的进化,并提供了控制转座子分子归化的原理的见解(点击阅读);
【47】美国Salk研究所Tony Hunter院士和史宇博士、以及南方科技大学田瑞军教授等的合作在Nature上发表了题为“Targeting LIF-mediated paracrineinteraction for pancreatic cancer therapy and monitoring”的文章,正是基于假设PSC和PCC之间的通信可以成为开发PDAC治疗和诊断有效策略的可利用目标进行研究。研究结果显示白血病抑制因子(Leukemia inhibitory factor, LIF)是介导胰腺癌细胞和星状细胞之间信号传导的关键因子,并且其可以作为胰腺癌治疗靶点和生物标志物(点击阅读);
【48】2019年4月24,复旦大学金力团队在Nature在线发表题为“Phylogenetic evidence for Sino-Tibetan origin in northern China in the Late Neolithic”的研究论文,该研究用109种语言进行贝叶斯系统发育分析,得出949个词汇根义,估计汉藏语言差异的时间深度约为4,200-7,800年,平均值约为5900年。此外,系统发育支持了Sinitic和Tibeto-Burman语言之间的二分法。该结果与考古记录以及中国农业扩张的农业和语言传播假设相兼容。该研究结果为进一步开展东亚史前人类活动的跨学科研究提供了语言学立足点(点击阅读);
【49】2019年4月26日,北京大学邓宏魁研究组、解放军总医院卢实春研究组以及复旦大学袁正宏研究组合作在Science发表了题为Long-term functional maintenance of primary human hepatocytes in vitro的研究论文,首次证明利用化学小分子调控细胞信号通路,实现了功能细胞在体外的长期维持,这为大量制备功能成熟细胞及其应用提供了可能(点击阅读);
【50】2019年4月12日,中科院上海药物所徐华强,王明伟,浙江大学张岩及匹兹堡大学医学院Jean-Pierre Vilardaga共同通讯在Science发表题为“Structure and dynamics of the active human parathyroid hormone receptor-1”的研究论文,该研究报告了人类PTH1R与长效PTH类似物和刺激性G蛋白结合的冷冻电子显微镜结构。 结合的肽采用延伸的螺旋,其氨基末端深入插入受体跨膜结构域(TMD),导致跨膜螺旋6的羧基末端部分解旋并在该螺旋中间诱导尖锐的扭结以允许受体 与G蛋白结合。与单个TMD结构状态相反,细胞外结构域采用多种构象。这些结果提供了对PTH结合和受体激活的结构基础和动力学的见解。总而言之,该结构模型有助于解释甲状旁腺激素如何与其受体相互作用以及受体激活的分子基础(点击阅读);
【51/52】2019年4月4日,清华大学柴继杰课题组、中科院遗传发育所周俭民课题组和清华大学王宏伟课题联合同期背靠背发表两篇重量级Science文章,完成了植物NLR蛋白复合物的组装、结构和功能分析,揭示了NLR作用的关键分子机制,是植物免疫研究的里程碑事件。两篇文章分别是: "Ligand-triggered allosteric ADP release primes a plant NLR complex”的研究论文。该研究通过重建了拟南芥中NLB蛋白ZAR1-RKS1和ZAR1-RKS1-PBL2UMP复合物,并分别以3.7和4.3?的分辨率确定了它们冷冻电子显微镜(cryo-EM)结构,揭示了ZAR1-RKS1识别PBL2UMP和PBL2UMP激活ZAR1的机制,为理解NLR蛋白提供了结构模板!"Reconstitution and structure of a plant NLR resistosome conferring immunity”的研究论文。该研究重建了ZAR1-RKS1-PBL2UMP-dATP活性复合体,证明了其复合体在免疫激活过程中进行寡聚化,并揭示了其激活免疫反应的机制!这两项研究在植物免疫研究领域取得历史性的重大突破,填补了人们25年来对植物抗病蛋白认知的巨大空白,将为研究其它抗病蛋白提供范本。Science杂志同期发表评论文章,认为“首个抗病小体的发现,为植物如何控制细胞死亡和免疫提供了线索”“显著推进了人们对植物免疫机制的认识”“打开了多个开拓性研究方向”(点击阅读);
【53】2019年4月25日,中国科学院生物化学与细胞生物学研究所陈玲玲,中国科学院-马普学会计算生物学伙伴研究所杨力和上海交通大学医学院附属仁济医院沈南共同通讯在Cell在线发表题为“Structure and Degradation of Circular RNAs Regulate PKR Activation in Innate Immunity”的研究论文,该研究首次发现环形RNA在细胞受病毒感染时被核糖核酸酶RNase L降解的过程,并解析了环形RNA形成16-26 bp的双链RNA茎环结构,并以此为基础结合天然免疫因子PKR的特性。深入研究发现,在正常细胞状态下,环形RNA通过结合PKR并抑制其活性,避免了PKR过度激活引起免疫反应;而当细胞被病毒感染时,环形RNA被RNase L快速降解进而释放PKR参与细胞的天然免疫炎症反应。进一步通过对系统性红斑狼疮病人来源的外周血单核细胞分析表明,在病人体内环形RNA普遍低表达且PKR异常激活;而增加环形RNA则可以显著抑制病人来源外周血单核细胞和T细胞中的PKR及其下游免疫信号通路的过度激活。这些发现不仅首次揭示了环形RNA的降解途径及其特殊二级结构特征,并发现环形RNA发挥天然免疫炎症反应调控的全新功能。相关研究进展为环形RNA代谢和功能研究奠定了重要基础,也为炎症性自身免疫病系统性红斑狼疮的发病机制提出了环形RNA参与的新型机制(点击阅读);
【54】植物生长素在植物生长和发育的几乎所有方面都起着至关重要的作用。生长素的浓度在不同组织中变化,介导不同的发育结果并有助于生长素的功能多样性。但是,这些活动背后的机制却知之甚少。原中科院上海植物逆境研究中心徐通达研究组(现在任职于福建农林大学)在Nature发表题为“TMK1-mediated auxin signalling regulates differential growth of the apical hook”的研究论文,该研究确定了一种生长素信号传导机制,它基于转运抑制剂反应1(TIR1)和其他生长素受体F-box(AFB)家族蛋白(TIR1 / AFB受体),与经典生长素途径平行作用,细胞生长素水平介导顶端钩发育过程中的差异生长。生长素-TMK1信号传导途径起源于细胞表面,由高水平的生长素触发,并与TIR1 / AFB信号传导途径共享部分重叠的转录因子组。这允许对不同浓度的细胞生长素进行不同的解释,从而使这种通用的信号分子能够介导复杂的发育结果(点击阅读);
【55】最近提出遗传补偿反应(GCR)作为基因敲除和基因敲除之间表型差异的可能解释;然而,GCR的潜在分子机制仍然没有被描述。浙江大学彭金荣及陈军在Nature在线发表题为“PTC-bearing mRNA elicits a genetic compensation response via Upf3a and COMPASS components”的研究论文,该研究使用capn3a和nid1a基因的斑马鱼敲除和敲除模型,显示带有过早终止密码子(PTC)的mRNA迅速触发涉及Upf3a和COMPASS复合物组分的GCR。与具有小肝脏的capn3a敲低胚胎和具有短体长的nid1a敲低胚胎不同,capn3a-null和nid1a-null突变体看起来正常,这些表型差异归因于同一家族中其他基因的上调。这些发现为GCR提供了潜在的机制基础,并且可能有助于开发治疗策略,通过在突变基因中产生PTC或引入含有PTC的转基因来触发GCR来治疗与遗传病相关的错义突变(点击阅读);
【56】2019年6月26日,中国科学院上海生化细胞所杨巍维与中国科学院大连化学物理研究所李国辉研究组合作在Nature 在线发表题为“UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis”的研究论文,该论文揭示在激活EGFR后,UGDH在人肺癌细胞中的酪氨酸473处被磷酸化。磷酸化的UGDH与Hu抗原R(HuR)相互作用并将UDP-葡萄糖转化为UDP-葡糖醛酸,这减弱了UDP-葡萄糖介导的HuR与SNAI1 mRNA结合的抑制作用,因此增强了SNAI1 mRNA的稳定性。SNAIL的产生增加引发上皮 - 间质转化,从而促进肿瘤细胞的迁移和肺癌转移。此外,酪氨酸473处UGDH的磷酸化与肺癌患者的转移复发和预后不良相关。该研究结果揭示了UDP-葡萄糖在肺癌转移中的肿瘤抑制作用,并揭示了UGDH通过增加SNAI1 mRNA稳定性来促进肿瘤转移的机制。这些结果支持pUGDH(Y473)调节的肿瘤细胞迁移在人肺癌临床行为中的重要作用,并揭示了pUGDH(Y473)与肿瘤临床侵袭性之间的关系(点击阅读);
【57】2019年6月27日,加州大学圣地亚哥分校付向东及武汉大学医学研究院肖锐共同通讯在Cell 在线发表题为“Pervasive Chromatin-RNA Binding Protein Interactions Enable RNA-Based Regulation of Transcription”的研究论文,该研究进行大规模RBP ChIP-seq分析,揭示了人类基因组中活跃染色质区域中广泛的RBP存在。与转录因子(TFs)一样,RBP也显示出对基因组中热点的强烈偏好,特别是基因启动子,其中它们的关联通常与转录输出相关(点击阅读);
【58】2019年7月5日,郑州大学孙莹璞,清华大学颉伟及徐家伟共同通讯在Science 在线发表题为“Resetting histone modifications during human parental-to-zygotic transition”的研究论文,该研究使用CUT&RUN来观察人类早期发育中关键组蛋白标记的重编程。 与小鼠不同,H3K4me3在人卵母细胞的启动子中主要表现出规范的模式。 受精后,pre-zygotic genome activation(ZGA)胚胎在富含CpG的调节区域中获得许可的染色质和广泛的H3K4me3; 相比之下,抑制性H3K27me3经历全基因组缺失。 然后,富含CpG的调节区在ZGA上分解为活性或抑制状态,随后在发育基因处恢复H3K27me3。 最后,通过结合染色质和转录组图,该研究揭示了早期谱系规范期间的转录环路和不对称H3K27me3图谱,该研究结果揭示了连接人类亲本-合子表观遗传转变的启动阶段。总之,该研究揭示了连接亲本表观基因组和合子表观基因组的保守和多样的重编程模式, 该研究为人类早期发育中表观遗传重编程的未来研究铺平了道路(点击阅读);
【59】2019年7月5日,原清华大学颜宁(清华大学第一单位)等人Nature 在线发表题为“Modulation of cardiac ryanodine receptor 2 by calmodulin”的研究论文,该研究报道了RyR2的8个冷冻电子显微镜(cryo-EM)结构,它们共同揭示了不同形式CaM的分子识别特征,并提供了对CaM对RyR2通道门控的调节的见解。Apo-CaM和Ca2 + -CaM结合由手柄,螺旋和中心区域形成的细长裂缝中的不同但重叠的位点。RyR2上CaM结合位点的转变受Ca2 +与CaM结合而不是RyR2的控制。Ca2 + -CaM诱导各个中心结构域的旋转和域内移位,导致PCB95和Ca2 +激活的通道的孔闭合。相比之下,ATP,咖啡因和Ca2 +激活通道的孔在Ca2 + -CaM存在下保持开放,这表明Ca2 + -CaM是RyR2门控的许多竞争调节剂之一(点击阅读);
【60】2019年7月10日,清华大学柴继杰与东安格利亚大学Cyril Zipfel共同通讯在Nature在线发表题为“Mechanisms of RALF peptide perception by a heterotypic receptor complex”的研究论文,该研究报道RALF23诱导CrRLK1L FERONIA(FER)和LORELEI(LRE)-LIKE GLYCOSYLPHOSPHATIDYLINOSITOL(GPI)-ACHORED PROTEIN 1(LLG1)之间的复合物以调节免疫信号。该研究工作揭示了GPI锚定蛋白与植物遗传学上不相关的RK一致的植物肽感知的意外机制,这提供了一个分子框架,通过CrRLK1L RK和GPI锚定 的LRE / LLG家族蛋白质之间的不同异源复合物的感知,提供了一种分子框架来理解RALF多肽如何调节多个过程(点击阅读);
【61】 7月19日,学术期刊《科学》(Science)杂志以研究长文形式在线发表了中国工程院院士、南开大学校长曹雪涛团队的论文,报道该课题组发现了机体感知与甄别入侵病毒DNA的一种新型天然免疫识别受体(hnRNP-A2B1)。就像“哨兵”一样,该受体分子能够在细胞核内特异性地识别病毒DNA,随后激活天然免疫信号通路和诱导干扰素产生,启动天然免疫应答反应以清除DNA病毒的感染。这一细胞核内抗病毒“哨兵”的发现,开辟了天然免疫与炎症研究领域的新方向,也为抗病毒治疗与炎症疾病防治提供了潜在药物研发新靶标(点击阅读);
【62】2019年7月18日,北京生命科学研究所邵峰团队在Cell 在线发表题为“A Bacterial Effector Reveals the V-ATPase-ATG16L1 Axis that Initiates Xenophagy”的研究论文,该研究进行了细菌转座子筛选,并鉴定了一种T3SS效应物SopF,其有效阻断了沙门氏菌自噬。SopF是一种通用的xenophagy抑制剂,不影响经典自噬。在细菌引起的液泡损伤时,V-ATP酶将ATG16L1募集到含有细菌的液泡上,该液泡被SopF阻断。哺乳动物ATG16L1具有与V-ATP酶相互作用所需的WD40结构域。SopF抑制自噬在体内促进鼠伤寒沙门氏菌增殖。SopF靶向V-ATP酶中ATP6V0C的Gln124用于ADP-核糖基化。Gln124的突变也阻止了抗菌自噬。因此,SopF的发现揭示了V-ATPase-ATG16L1轴,其关键性地介导细胞内病原体的自噬识别(点击阅读);
【63】2019年7月19日,沈阳师范大学周长付(沈阳师范大学第一单位)在Science在线发表题为“New Jurassic mammaliaform sheds light on early evolution of mammal-like hyoid bones”的研究论文,该研究报告了一个新发现的,保存完好的docodontan骨架,它提供了关于舌骨转化和哺乳动物中最早的语言功能演变的新见解。该研究表明,在哺乳动物发育之前存在肌肉化的喉咙(点击阅读);
【64】2019年7月22日,福建师范大学欧阳松应与美国普渡大学罗招庆共同通讯在Nature 在线发表了题为“Regulation of phosphoribosyl ubiquitinationby a calmodulin-dependent glutamylase”的研究论文,该研究发现致病性嗜肺军团菌(Legionella pneumophila)效应蛋白SidJ可以被宿主体内的一个钙调蛋白Calmodulin(简称CaM)结合并激活,进而通过谷氨酸化修饰(Glutamylation)抑制SidE家族泛素连接酶活性的分子机理。该工作详细解析了致病性嗜肺军团菌效应蛋白SidJ调控SidE酶活性的分子机制,为探讨谷氨酸修饰酶(glutamylase)的催化机制提供了新的体系,也为临床治疗嗜肺军团菌感染的药物开发提供了新靶点(点击阅读);【65】Ferroptosis是一种非凋亡形式的程序性细胞死亡,由癌症中的氧化应激,植物的热应激和出血性中风引发。铁死亡有助于几种肿瘤抑制因子如p53,BAP1和富马酸酶的抗肿瘤功能。与直觉相反,间充质癌细胞 - 易于转移,并且通常对各种治疗具有抗性 - 对于铁死亡非常敏感。为什么会这样,让人感到疑惑不解。2019年7月24日,第四军医大学/空军军医大学陈志南及美国纪念斯隆凯特琳癌症中心姜学军共同通讯在Nature 在线发表题为“Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP signalling”的研究论文,该研究证明了细胞间相互作用和细胞内NF2-YAP信号在决定铁死亡中的作用,并且还表明NF2-YAP信号传导中的恶性突变可以预测癌细胞对未来诱导铁死亡的疗法的反应性(点击阅读);【66】2019年8月2日,深圳大学胡章立及杜克大学Pei Zhen-Ming共同通讯在Nature在线发表题为“Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx”的研究论文,该研究使用基于Ca2 +成像的正向遗传筛选,分离了拟南芥突变体moca1,并且鉴定MOCA1作为质膜中的糖基肌醇磷酰神经酰胺(GIPC)鞘脂的葡糖醛酸基转移酶。MOCA1是盐诱导的细胞表面电位去极化,Ca2 + spikes,Na + / H +逆向转运激活和生长调节所必需的。 Na +与GIPC结合以门控Ca2 +流入通道。这种盐感应机制可能意味着质膜脂质参与各种环境盐水平的适应,并可用于改善作物的抗盐性。总之,研究结果揭示了植物中的盐感知,强调了GIPCs作为特定类鞘脂的重要性 - 用于调节质膜上的信号传导过程,并强调了各种脂质的功能多样性。 该研究结果还可以为工程抗盐作物提供潜在的分子遗传目标(点击阅读);【67】2019年8月2日,清华大学生命学院隋森芳,中国科学院植物所匡廷云及沈建仁共同通讯在Science 发表题为“The pigment-protein network of a diatom photosystem II–lightharvesting antenna supercomplex”的研究论文,该研究报道了来自中心硅藻-角毛藻(Chaetoceros gracilis)的光系统II(PSII) - 岩藻黄素(Fx)叶绿素(Chl)a / c结合蛋白(FCPII)超复合物的冷冻电子显微镜结构。 超复合物包含两个原体,每个原体在PSII核心周围具有四个四聚体和六个单体FCPII,其在腔表面含有五种外源氧进化蛋白。该结构揭示了巨大的色素网络的排列,有助于硅藻中有效的光能收集,转移和消散过程。该成果是该合作团队在前期红藻、绿藻的光合膜蛋白结构与功能研究工作的拓展,为阐明硅藻PSII-FCPII超级复合体中独特的光能捕获、传递和转化以及高效的光保护机制提供了重要基础,为揭示PSII复合体的进化演变提供了重要线索。该成果也为PSII的超快动力学、理论计算和人工模拟光合作用研究提供了新理论依据,同时为后续指导设计新型作物、提高作物的捕光和光保护效率提供了新思路(点击阅读);【68】开发人工智能(AGI)有两种通用方法:计算机科学导向和神经科学导向。由于它们的配方和编码方案存在根本差异,这两种方法依赖于截然不同且不兼容的平台,这阻碍了AGI的发展。一个可以支持普遍的基于计算机科学的人工神经网络以及神经科学启发的模型和算法的通用平台是非常需要的。2019年7月31日,清华大学施路平团队在Nature 在线发表题为“Towards artificial general intelligence with hybrid Tianjic chip architecture”的研究论文,该研究展示了天机芯片,它集成了两种方法,以提供混合,协同平台。天机芯片采用多核架构,可重构构建模块和采用混合编码方案的流线型数据流,不仅可以适应基于计算机科学的机器学习算法,还可以轻松实现脑启动电路和多种编码方案。仅使用一个芯片,研究人员就可以在无人驾驶自行车系统中同时处理多种算法和模型,实现实时物体检测,跟踪,语音控制,避障和平衡控制。该研究预计将通过为更通用的硬件平台铺平道路来刺激AGI的发展(点击阅读);
【69】2019年8月7日,中科院生物化学与细胞生物学研究所景乃禾、中科院-马普学会计算生物学伙伴研究所韩敬东与中科院广州生物医药与健康研究院彭广敦共同通讯作在Nature在线发表题为“Molecular architecture of lineage allocation and tissue organization in early mouse embryo”的研究论文,该研究报告了从原肠胚前期到晚期原肠胚阶段发育过程中胚层中确定位置的细胞群的空间分辨转录组。这种时空转录组提供高分辨率的数字化原位基因表达谱,揭示了组织谱系的分子谱系,并定义了时间和空间中多能性状态的连续体。转录组进一步鉴定了驱动谱系规范和组织模式的分子决定簇网络,支持Hippo-Yap信号传导在胚层发育中的作用,并揭示内脏内胚层在早期小鼠胚胎中对内胚层的贡献(点击阅读);
【70】2019年8月15日,中国农业大学田丰团队在Science在线发表题为”Teosinte ligule allele narrows plant architecture and enhances high-density maize yields“的研究论文,该研究克隆了UPA1(Upright Plant Architecture1)和UPA2,这两个数量性状基因座赋予了直立的植物结构。 UPA2由调节位于下游9.5千碱基的B3结构域转录因子(ZmRAVL1)表达的双碱基序列多态性控制。UPA2表现出DRL1(DROOPING LEAF1)的差异结合,DRL1与LG1(LIGULELESS1)物理相互作用并抑制ZmRAVL1的LG1活化。 ZmRAVL1调节brd1(BRD1,油菜素类固醇C-6氧化酶1,UPA1的编码蛋白)改变内源性油菜素类固醇含量和叶角。 减少叶角的UPA2等位基因起源于玉米的野生祖先teosinte,并且在玉米驯化期间已经丢失。因此,操纵ZmRAVL1可以产生直立的叶子结构,以增加种植密度。 将野生UPA2等位基因纳入现代育种并编辑ZmRAVL1可增强高密度玉米产量(点击阅读);
【71】胚胎植入是哺乳动物胚胎发生过程中的里程碑事件。植入失败是人类早期妊娠失败的重要原因。由于在体内胚胎植入后很难获得人胚胎,目前尚不清楚基因调控网络和表观遗传机制如何控制胚胎植入过程。2019年8月21日,北京大学汤富酬及乔杰共同通讯在Nature在线发表题为“Reconstituting the transcriptome and DNA methylome landscapes of human implantation”的研究论文,该研究借助捐赠的人类胚胎和用于植入后胚胎的强大体外培养系统和单细胞多组学测序技术,该研究同时分析了基因表达网络和谱系 - 单细胞分辨率下人类种植周围胚胎的特定DNA甲基化模式(点击阅读);
【72】2019年8月21日,清华大学肖百龙与李雪明共同通讯在Nature在线发表题为“Structure and mechanogating of the mammalian tactile channel PIEZO2”的研究论文,该研究确定了全长2,822残基小鼠PIEZO2的同源三聚体结构,分辨率为3.6-3.8?,揭示了38个跨膜螺旋的完全分辨的拓扑结构和具有跨膜和胞质收缩位点的完全闭合的孔。PIEZO2与其同源物PIEZO1之间的结构比较表明,跨膜收缩位点可能充当由帽结构域控制的跨膜门。总之,该研究提供了对压电通道的结构和机械化机制的见解;
【73】宿主细胞代谢可以通过病毒感染来调节,从而影响病毒存活或清除。由病毒 - 宿主相互作用中的N6-甲基腺苷(m6A)修饰介导的细胞代谢重新布线仍然是未知的。2019年8月22日,曹雪涛团队在Science在线发表题为”N6-methyladenosine RNA modification–mediated cellular metabolism rewiring inhibits viral replication“的研究论文,该研究发现,为了响应病毒感染,宿主细胞损害RNA m6A去甲基酶ALKBH5的酶活性。 这增加了α-酮戊二酸脱氢酶(OGDH)mRNA的m6A甲基化,从而降低了其mRNA稳定性和蛋白质表达。 减少的OGDH减少了病毒复制所需的代谢物衣康酸的产生。 随着体内OGDH和衣康酸产生减少,ALKBH5缺陷小鼠显示出对病毒攻击的先天免疫应答依赖性抗性。该研究结果表明,m6A RNA修饰介导的OGDH-衣康酸途径的下调重新编程细胞代谢以抑制病毒复制,提出了控制病毒感染的潜在靶标。总而言之,该研究显示OGDH和衣康酸以先天免疫非依赖性方式促进病毒复制,提出靶向OGDH-衣康酸代谢反应以控制病毒感染性疾病(点击阅读)。
【74】2019年8月28日,哈尔滨工业大学黄志伟及北京大学高宁共同通讯在Nature 在线发表题为“Structural basis of assembly of the human TCR–CD3 complex”的研究论文,该研究报告了人类TCRα/β与CD3六聚体复合物的冷冻电子显微镜结构,分辨率为3.7?。该结构含有完整的细胞外结构域(ECD)和TCR-CD3的所有跨膜(TM)螺旋。八聚体TCR-CD3复合物(TCRα/β:CD3γ/ε:CD3δ/ε':CD3ζ/ζ')以1:1:1:1组装。 TCR-CD3的ECD的装配由TCRα/β的恒定结构域和连接肽介导。总而言之,该研究数据揭示了TCR-CD3复合物装配的结构基础,为TCR触发提供了线索,并为合理设计针对该复合物的免疫疗法奠定了基础。
【75】2019年8月29日,南方医科大学丁彦青及周伟杰共同通讯在Cell 在线发表题为“LECT2, a Ligand for Tie1, Plays a Crucial Role in Liver Fibrogenesis”的研究论文,该研究将LECT2鉴定为孤儿受体Tie1的功能性配体,并为LECT2 / Tie1信号在血管生成/血窦毛细血管化和肝纤维化中的潜在作用提供了有价值的见解(点击阅读);【76】2019年8月29日,华中科技大学刘剑峰及密歇根大学X.Z. Shawn Xu共同通讯在Cell在线发表题为“A Cold-Sensing Receptor Encoded by a Glutamate Receptor Gene”的研究论文,该研究将红藻氨酸类谷氨酸受体同源物GLR-3鉴定为冷受体(点击阅读);【77】2019年9月4日,上海交通大学医学院第九人民医院黄晶及雷鸣等人(第一单位为中科院上海生化细胞所)在Nature 在线发表题为“Structural basis of nucleosome recognition and modification by MLL methyltransferases”的研究论文,该研究报告人类MLL1和MLL3催化模块与核小体核心颗粒(含有H2BK120ub1或未修饰的H2BK120)的冷冻电子显微镜结构,这些结构证明MLL1和MLL3复合物都与核小体的组蛋白折叠和DNA区域广泛接触,这样可以轻松获得组蛋白H3尾部,这对于H3K4的有效甲基化至关重要(点击阅读);【78】2019年9月6日,Cell杂志以“Fate mapping via Ms4a3 expression history traces monocyte-derived cells”为题,在线发表了上海交通大学医学院,上海市免疫学研究所Florent Ginhoux、苏冰教授课题组的研究论文。该论文通过单核细胞前体特异性的遗传学谱系示踪模型,揭示了单核细胞(monocyte)在骨髓中的发育过程以及成体组织巨噬细胞(Tissue-residentmacrophage)的更新过程,解决了长期以来国际免疫学界关于单核-巨噬细胞来源和更新的争议(点击阅读);
【79】2019年9月12日,北京大学陈雷团队在Nature 在线发表题为“Structural insights into the mechanism of human soluble guanylate cyclase”的研究论文,研究人员使用cryo-EM分别在3.9?和3.8?的分辨率下确定人α1β1 sGC全酶在无活性和NO活化状态下的结构。另外,该研究还获得了组成型活性β1H105C突变体的6.8?分辨率cryo-EM图谱(点击阅读);
【80】2019年10月2日,上海交通大学覃文新,荷兰癌症研究所Leila Akkari及René Bernards共同通讯在Nature 在线发表题为"Inducing and exploiting vulnerabilities for the treatment of liver cancer"的研究论文,该研究表明DNA复制激酶CDC7的药理学抑制作用选择性诱导TP53突变的肝癌细胞衰老。总之,CDC7抑制剂与mTOR抑制剂(舍曲林)联合进行治疗在肝癌中带来临床益处,进而降低了肿瘤复发的风险;数据表明利用诱发的脆弱性可能是治疗肝癌的有效方法(点击阅读)。【81】2019年10月4日,中科院植物所植被与环境变化国家重点实验室马克平团队在Science 在线发表题为“Differential soil fungus accumulation and density dependence of trees in a subtropical forest”的研究论文,该研究使用多级建模方法,通过DNA测序将亚热带森林地块的长期幼苗统计数据与土壤真菌群落数据相结合,以解决各种土壤真菌的对树木密度依赖性的反馈(点击阅读);
【82】2019年10月3日,复旦大学附属中山医院樊嘉、中国科学院上海药物研究所周虎及中国科学院生物化学与细胞生物学研究所高大明共同通讯在Cell 在线发表题为"Integrated Proteogenomic Characterization of HBV-related Hepatocellular Carcinoma"的研究论文,该研究使用配对的肿瘤和来自159名患者的相邻肝组织进行了乙型肝炎病毒(HBV)相关的肝细胞癌(HCC)的首次蛋白质组学表征。总之,该研究提供了宝贵的资源,可极大地扩展与HBV相关的HCC的知识,并可能最终有益于临床实践(点击阅读);【83】2019年10月10日,同济大学翁志萍,麻省大学医学院William E. Theurkauf及昆士兰大学Keith Chappell共同通讯在Cell 在线发表题为"The piRNA Response to Retroviral Invasion of the Koala Genome"的研究论文,该研究发现KoRV-A γ逆转录病毒感染体细胞和生殖细胞,并通过水平和垂直转移相结合的方式席卷野生考拉,从而可以直接分析生殖细胞基因组的逆转录病毒入侵(点击阅读);
【84】2019年10月17日,中科院生物物理所饶子和,王祥喜及中国农科院步志高共同通讯在Science 在线发表题为“Architecture of African swine fever virus and implications for viral assembly”地研究论文,该研究使用优化的图像重建策略,解析了高达4.1埃的ASFV衣壳结构,包括一个主要(p72)和四个次要的衣壳蛋白质(M1249L,p17,p49和H240R),并被组织为pentasymmetrons。这些结构细节揭示了衣壳稳定性和组装的基础,为ASF疫苗开发开辟了新途径(点击阅读);
【85】2019年10月17日,华中科技大学公共卫生学院王超龙及新加坡基因组研究所刘建军共同通讯在Cell在线发表题为"Large-Scale Whole-Genome Sequencing of Three Diverse Asian Populations in Singapore"的研究论文,该研究通过对4810名新加坡华人,马来人和印度人的全基因组测序,研究人员发现了9830万个SNP和少量插入或缺失,其中一半以上是新发现的。这些结果凸显了这些数据作为在广泛的地理区域中增强人类遗传学发现能力的资源的价值(点击阅读);
【86】2019年10月23日,由华大基因领衔的一千个植物转录组联盟在Nature在线发表了题为“A Phylogenomic Viewof Evolutionary Complexity in Green Plants”的植物物种进化研究成果。来自世界各地的近200名植物科学家组成的国际联盟,历时9年时间,研究发布了1178种植物转录组测序成果,这些植物跨越了绿色植物的多样性,包括绿色植物(Viridiplantae),青藻(Glaucophyta)和红藻(Rhodophyta)以及31种植物基因组。该研究为检查绿色植物的进化提供了一个强大的系统生物学框架。高质量植物基因组序列的可用性不断提高以及功能基因组学的进步,使人们能够在整个生命之树上进行基因组进化的研究(点击阅读);
【87】2019年10月23日,上海交通大学医学院周爱武,中国农业科学院生物技术研究所程奇及曼彻斯特大学Nigel S. Scrutton共同通讯在Nature 在线发表题为“Structural basis for enzymatic photocatalysis in chlorophyll biosynthesis”的研究论文,该研究解析了嗜热球菌和Synechocystis sp的蓝藻游离形式及与烟酰胺辅酶复合的POR的晶体结构。这些研究揭示了POR活性位点如何通过从NADPH进行的局部氢化物转移和沿结构定义的质子转移途径的远距离质子转移促进光驱动的原叶绿素减少(点击阅读)。
【88】2019年10月25日,浙江大学郭江涛,李敬源,天津大学叶升,德克萨斯大学西南医学中心白晓辰及范德比尔特大学的Eric Delpire共同通讯在Science 发表题为“Cryo-EM structures of the human cation-chloride cotransporter KCC1”的研究论文,该研究介绍了在2.9至3.5埃分辨率下,在氯化钾或氯化钠中人氯化钾共转运蛋白KCC1的冷冻电子显微镜(cryo-EM)结构。KCC1以二聚体形式存在,胞外和跨膜结构域均参与二聚化。结构和功能分析以及计算研究表明,KCC1中有一个钾位和两个氯化物位,这些都是离子迁移活性所必需的。KCC1采用向内构象,并封闭了细胞外门。KCC1结构使我们能够对KCC中潜在的离子传输机制进行建模,并为药物设计提供蓝图(点击阅读);
【89】2019年10月25日,浙江大学医学院基础医学Dante Neculai、孙启明、加拿大Princess Margaret癌症研究所研究中心Brain Raught及多伦多St Michael医院Gregory D. Fairn共同通讯在Science在线发表题为“Palmitoylation of NOD1 and NOD2 is required for bacterial sensing”的研究论文,该研究发现膜募集和免疫信号传导需要NOD1 / 2 S-棕榈酰化。ZDHHC5被确定为负责此关键的翻译后修饰的棕榈酰转移酶,并且发现NOD2中的几种与疾病相关的突变与缺陷性S-棕榈酰化有关。因此,ZDHHC5介导的NOD1 / 2的S-棕榈酰化对于它们对肽聚糖的应答和进行有效免疫应答的能力至关重要(点击阅读);
【90】2019年3月13日,南京大学戈惠明、谭仁祥和梁勇研究团队首次鉴定出能够催化[6+4]环加成反应的一类酶家族,相关成果“Enzyme-catalysed [6+4] cycloadditions in the biosynthesis of natural products”在线发表在Nature杂志上。南京大学助理研究员张博博士以及博士研究生王凯标、王文和汪欣为该论文共同第一作者。戈惠明、谭仁祥、梁勇以及加州大学洛杉矶分校的Kendall N. Houk教授为共同通讯作者(点击阅读);
—END—
内容为【iNature】公众号原创,欢迎转载
白名单回复后台「转载」
微信加群
iNature汇集了4万名生命科学的研究人员及医生。我们组建了80个综合群(16个PI群及64个博士群),同时更具专业专门组建了相关专业群(植物,免疫,细胞,微生物,基因编辑,神经,化学,物理,心血管,肿瘤等群)。温馨提示:进群请备注一下(格式如学校+专业+姓名,如果是PI/教授,请注明是PI/教授,否则就直接默认为在读博士,谢谢)。可以先加小编微信号(love_iNatures),或者是长按二维码,添加小编,之后再进相关的群,非诚勿扰。
▼点击查看相关文章
影响因子|朱健康 | 汤富酬 | 张康| 李红良| 曹雪涛| 施一公
施扬|张锋|David Liu|胰腺癌 | 肺癌
免疫治疗|疼痛|CRISPR|m6A|lincRNA|GPCR
西南医科 | 上海交通 |万里学院|山大|安农
大学排名|科研基金|作者专访|导师选择|植物排行
风云榜 |中国最高引 | 突破10文章|有用邮件
投稿、合作、转载授权事宜
请联系微信ID:18217322697 或邮箱:921253546@qq.com
觉得本文好看,请点这里↓